High-resolution modeling of three-dimensional circulation in the Gulf of Mexico

Arash Fathi1, Casey Dietrich2, Clint Dawson1, Kendra Dresback3

1Institute for Computational Engineering and Sciences, University of Texas at Austin
2Dept. of Civil, Construction, and Environmental Engineering, NC State University
3School of Civil Engineering and Environmental Science, University of Oklahoma

February 12th, 2016
Outline

3D Shallow Water Equations
Accurate computation of baroclinic pressure gradients and horizontal diffusion terms
Numerical experiments –toy problems
Bathymetry smoothing
Gaussian filter for bathymetry/velocity
Biharmonic viscosity operator
Smagorinsky/Leith viscosity parameter
Simulation results of Gulf of Mexico

Storm surge during Hurricane Katrina.
3D Shallow Water Equations (SWE)

Spherical coordinate:

- Continuity:

\[
\frac{1}{R \cos \phi} \frac{\partial u}{\partial \lambda} + \frac{1}{R \cos \phi} \frac{\partial (\nu \cos \phi)}{\partial \phi} + \frac{\partial w}{\partial z} + \frac{2w}{R} = 0.
\]

- Horizontal momentum:

\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{u}{R \cos \phi} \frac{\partial u}{\partial \lambda} + \frac{v}{R} \frac{\partial u}{\partial \phi} + w \frac{\partial u}{\partial z} &= f v - \frac{1}{R \cos \phi} \frac{\partial [g(\zeta - \alpha \eta) + p_s/\rho_0]}{\partial \lambda} + \frac{\partial}{\partial z}\left(\frac{T_{z\lambda}}{\rho_0}\right) - b_\lambda + m_\lambda, \\
\frac{\partial u}{\partial t} + \frac{u}{R \cos \phi} \frac{\partial u}{\partial \lambda} + \frac{v}{R} \frac{\partial u}{\partial \phi} + w \frac{\partial u}{\partial z} &= -fu - \frac{1}{R} \frac{\partial [g(\zeta - \alpha \eta) + p_s/\rho_0]}{\partial \phi} + \frac{\partial}{\partial z}\left(\frac{T_{z\phi}}{\rho_0}\right) - b_\phi + m_\phi,
\end{align*}
\]

where:

\[
b_\lambda = \frac{g}{\rho_0 R \cos \phi} \frac{\partial}{\partial \lambda} \int_z^\zeta \rho \, dz, \quad b_\phi = \frac{g}{\rho_0 R \cos \phi} \frac{\partial}{\partial \phi} \int_z^\zeta \rho \, dz.
\]

ADCIRC does not solve the primitive continuity equation directly. It solves the generalized wave continuity equation, which is a combination of the primitive continuity equation, its temporal derivative, and spatial derivatives of the depth-integrated momentum equations.
3D Shallow Water Equations (SWE)

Cartesian coordinate:

\[
S_p \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0,
\]

\[
\frac{\partial u}{\partial t} + uS_p \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv = -S_p \frac{\partial [g(\zeta - \alpha \eta) + p_s/\rho_0]}{\partial x} + \frac{\partial}{\partial z} \left(\frac{\tau_{zx}}{\rho_0} \right) - b_x + m_x,
\]

\[
\frac{\partial v}{\partial t} + uS_p \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu = -\frac{\partial [g(\zeta - \alpha \eta) + p_s/\rho_0]}{\partial y} + \frac{\partial}{\partial z} \left(\frac{\tau_{zy}}{\rho_0} \right) - b_y + m_y,
\]

where \(S_p = \frac{\cos \phi_0}{\cos \phi} \)

Baroclinic pressure gradient:

\[
b_x = \frac{g}{\rho_0} S_p \frac{\partial}{\partial x} \int_z^\zeta \rho \, dz = \frac{g}{\rho_0} S_p \frac{\partial}{\partial x} \int_z^\zeta (\rho - \rho_o) \, dz,
\]

\[
b_y = \frac{g}{\rho_0} \frac{\partial}{\partial y} \int_z^\zeta \rho \, dz = \frac{g}{\rho_0} \frac{\partial}{\partial y} \int_z^\zeta (\rho - \rho_o) \, dz.
\]
Sigma coordinate:

\[x_\sigma = x, \]
\[y_\sigma = y, \]
\[\sigma = a + \frac{a-b}{H}(z - \zeta), \quad a = +1, \quad b = -1, \]
\[t_\sigma = t. \]
Sigma coordinate:

\[
\begin{align*}
\frac{\partial u}{\partial t_\sigma} + uS_p \frac{\partial u}{\partial x_\sigma} + v \frac{\partial u}{\partial y_\sigma} + w_\sigma \left(\frac{a - b}{H} \right) \frac{\partial u}{\partial \sigma} - f v &= \\
- S_p \frac{\partial [g(\zeta - \alpha \eta) + p_s/\rho_0]}{\partial x} + \left(\frac{a - b}{H} \right) \frac{\partial}{\partial \sigma} \left(\frac{\tau_{zx}}{\rho_0} \right) - b_x + m_x, \\
\frac{\partial v}{\partial t_\sigma} + uS_p \frac{\partial v}{\partial x_\sigma} + v \frac{\partial v}{\partial y_\sigma} + w_\sigma \left(\frac{a - b}{H} \right) \frac{\partial v}{\partial \sigma} + f u &= \\
- \frac{\partial [g(\zeta - \alpha \eta) + p_s/\rho_0]}{\partial y} + \left(\frac{a - b}{H} \right) \frac{\partial}{\partial \sigma} \left(\frac{\tau_{zy}}{\rho_0} \right) - b_y + m_y, \\
w_\sigma = w - \left(\frac{\sigma - b}{a - b} \right) \frac{\partial \zeta}{\partial x} - u \left[\left(\frac{\sigma - b}{a - b} \right) \frac{\partial \zeta}{\partial x} + \left(\frac{\sigma - a}{a - b} \right) \frac{\partial h}{\partial x} \right] - v \left[\left(\frac{\sigma - b}{a - b} \right) \frac{\partial \zeta}{\partial y} + \left(\frac{\sigma - a}{a - b} \right) \frac{\partial h}{\partial y} \right].
\end{align*}
\]
Baroclinic pressure gradient (BPG)

Sigma coordinate:

\[P = \frac{g}{\rho_0} \int_{z}^{\zeta} \rho \, dz \]

\[b_x = \frac{\partial P}{\partial x} = \frac{\partial P}{\partial x_\sigma} + \frac{\partial P}{\partial \sigma} \frac{\partial \sigma}{\partial x} \]
Baroclinic pressure gradient: z-coordinate

Scheme 1:

a) Evaluate pressure at the vertices of the projected elements.
b) Compute constant $BPG_{x/y}$ for each element.
c) Compute the weak form: $(BPG_{x/y}, \text{test function})$.
Baroclinic pressure gradient: z-coordinate

Scheme 2:

a) Evaluate pressure at the vertices of the projected elements.
b) Compute constant BPG$_{x/y}$ for each element.
c) Compute BPG$_{x/y}$ for the vertex of interest via SPR.

Baroclinic pressure gradient: z-coordinate

Scheme 2:

a) Evaluate pressure at the vertices of the projected elements.
b) Compute constant $BPG_{x/y}$ for each element.
c) Compute $BPG_{x/y}$ for the vertex of interest via SPR.
d) Repeat steps a-c for all vertices.
Baroclinic pressure gradient: z-coordinate

Scheme 2:

a) Evaluate pressure at the vertices of the projected elements.
b) Compute constant $BPG_{x/y}$ for each element.
c) Compute $BPG_{x/y}$ for the vertex of interest via SPR.
d) Repeat steps a-c for all vertices.
e) Evaluate $BPG_{x/y}$ at the vertices of the projected elements.
f) Compute the weak form: $(BPG_{x/y}, \text{test function})$, where now $BPG_{x/y}$ varies linearly within an element, and is continuous across elements.
Numerical experiment: BPG error for stratified fluid

Scheme 1: linear vertical interpolation

Scheme 1: cubic vertical interpolation

Scheme 2: cubic vertical interpolation

$\rho_{\text{top}} = 34$ psu
$\rho_{\text{bot}} = 35$ psu
21 sigma layers
$rx_0 = 0.45$
$rx_1 = 17.6$
Numerical experiment: lock-exchange problem

Scheme 1: cubic vertical interpolation

$\rho_{\text{left}} = 35 \text{ psu}$
$\rho_{\text{right}} = 34 \text{ psu}$
$\sigma_{x_0} = 0.18$
$\sigma_{x_1} = 7.1$

Scheme 2: cubic vertical interpolation
Transport of salinity and temperature – horizontal diffusion

\[\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} + w \frac{\partial c}{\partial z} - \frac{\partial}{\partial x} \left(N_h \frac{\partial c}{\partial x} \right) - \frac{\partial}{\partial y} \left(N_h \frac{\partial c}{\partial y} \right) - \frac{\partial}{\partial z} \left(N_v \frac{\partial c}{\partial z} \right) = 0 \]

In sigma coordinate:

\[\frac{\partial}{\partial x} \left(N_h \frac{\partial c}{\partial x} \right) = \frac{\partial}{\partial x_\sigma} \left(N_h \frac{\partial c}{\partial x_\sigma} \right) + \frac{\partial}{\partial x_\sigma} \left(N_h \frac{\partial c}{\partial \sigma} \frac{\partial \sigma}{\partial x} \right) + \frac{\partial}{\partial \sigma} \left(N_h \frac{\partial c}{\partial x_\sigma} \frac{\partial \sigma}{\partial x} \right) + \frac{\partial}{\partial \sigma} \left(N_h \frac{\partial c}{\partial \sigma} \frac{\partial \sigma}{\partial x} \right) \frac{\partial \sigma}{\partial x} . \]

Iso-sigma diffusion:

\[\frac{\partial}{\partial x} \left(N_h \frac{\partial c}{\partial x} \right) \approx \frac{\partial}{\partial x_\sigma} \left(N_h \frac{\partial c}{\partial x_\sigma} \right) . \]
Transport of salinity and temperature – horizontal diffusion

Sigma+Cartesian coordinate:

\[
\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x_\sigma} + v \frac{\partial c}{\partial y_\sigma} + w_\sigma \left(\frac{a-b}{H} \right) \frac{\partial c}{\partial \sigma} - \frac{\partial}{\partial x} \left(N_h \frac{\partial c}{\partial x} \right) - \frac{\partial}{\partial y} \left(N_h \frac{\partial c}{\partial y} \right) - \left(\frac{a-b}{H} \right)^2 \frac{\partial}{\partial \sigma} \left(N_v \frac{\partial c}{\partial \sigma} \right) = 0.
\]

Iso-sigma diffusion (lock-exchange after 40 days).

Correct treatment of horizontal diffusion (lock-exchange after 40 days).
Numerical experiment: lock-exchange problem

-t = 0
-t = 1 hr
-t = 6 hr
-t = 1 day
-t = 4 days
-t = 10 days
-t = 40 days
Steep bathymetry - smoothing

\[rx_0 = 0.45, \text{ } rx_1 = 17.6, \text{ maximum element slope} = 0.31 \]
Unstable (<1 day)

\[rx_0 = 0.09, \text{ } rx_1 = 3.6, \text{ maximum element slope} = 0.20 \]
Stable (180 days)
Steep bathymetry - smoothing for rx0

Bathymetry roughness indicators:

\[r_{x_0} = \frac{|h_i - h_j|}{h_i + h_j}, \quad \text{(range: 0.15 - 0.2)} \]

\[r_{x_1} = \frac{|h_i^k - h_j^k + h_i^{k-1} - h_j^{k-1}|}{h_i^k + h_j^k - h_i^{k-1} - h_j^{k-1}}, \quad \text{(range: 3 - 8)} \]

Algorithm 1 Smoothing bathymetry for \(r_{x_0} \).

1: \textbf{for} iter = 1 : iter_{max} \textbf{do}
2: \hspace{1em} \textbf{loop} over all elements
3: \hspace{2em} \textbf{loop} over all edges of an element
4: \hspace{3em} \textbf{if} \ \frac{|h_i - h_j|}{h_i + h_j} > r_{desired} \textbf{then}
5: \hspace{4em} h_i = h_i - \delta \text{ and } h_j = h_j + \delta \text{ s.t. } \frac{|h_i - h_j|}{h_i + h_j} = r_{desired}
6: \hspace{3em} \textbf{end if}
7: \hspace{2em} \textbf{end loop}
8: \hspace{1em} \textbf{end loop}
9: \textbf{end for}

Algorithm 1 Smoothing bathymetry for rx_1.

1: for $\text{iter} = 1 : \text{iter}_{\text{max}}$ do
2: loop over all elements
3: loop over all edges of an element
4: loop over all vertical layers
5: if $\frac{|h_i^k-h_j^k+h_{k-1}^k-h_{k-1}^k|}{h_i^k+h_j^k-h_{k-1}^k-h_{k-1}^k} > r_{\text{desired}}$ then
6: $h_i = h_i - \delta$ and $h_j = h_j + \delta$
7: else
8: s.t. $\frac{|h_i^k-h_j^k+h_{k-1}^k-h_{k-1}^k|}{h_i^k+h_j^k-h_{k-1}^k-h_{k-1}^k} > r_{\text{desired}}$
9: end loop
10: end loop
11: end loop
12: end for
Algorithm 3 Gaussian smoother: $q \rightarrow q_{\text{smooth}}$

1: loop over all nodes
2: \hspace{1cm} loop over all neighbor nodes of the above node \hspace{1cm} \triangleright Number of neighbors $= N$
3: \hspace{1cm} find l_{max}: maximum distance from the center node to its neighbors
4: \hspace{1cm} $\sigma = l_{\text{max}} \times \alpha$ \hspace{1cm} \triangleright e.g. $\alpha = 0.7$
5: \hspace{1cm} end loop
6: loop over the center node and all of its neighbors
7: \hspace{1cm} find the distance l_i from the central node to the neighbor node
8: compute node's weight: $w_i = \exp\left(-\frac{l_i^2}{2\sigma^2}\right)$
9: normalize weights, such that: $\Sigma_0^N w_i = 1$
10: $q_{\text{smooth}}(0) = \Sigma_0^N q_i w_i$
11: end loop
12: end loop

Another bathymetry smoothing technique: diffusion (MITgcm)
SL-16 finite element mesh for Southeastern Louisiana

4'751'299 elements
2'437'172 nodes
SL-16 after smoothing for rx0 and rx1
SL-16: rx0, rx1 + repeated application of the Gaussian filter
Slope parameter
Biharmonic viscosity operator

- Laplacian viscosity operator:

\[m_x = k_L \nabla^2 u \]

- Biharmonic viscosity operator (enhanced scale-selectivity):

\[m_x = -k_B \nabla^2 \nabla^2 u \]

- One-dimensional example:

\[u_t = k_L u_{xx} \]

\[u_t = -k_B u_{xxxx} \]
Biharmonic viscosity operator – overshoot/undershoot

\[
\begin{align*}
\frac{\partial C}{\partial t} &= -\frac{\partial^4 C}{\partial x^4} \\
C(0, x) &= C_0(x)
\end{align*}
\]

\[C_0(x) = \begin{cases}
0 & \text{for } |x| > 1 \\
1 & \text{for } |x| < 1
\end{cases}\]

Smagorinsky viscosity

3D turbulence theory - harmonic operator:

\[A_{Smag} = \left(\frac{L}{\pi} \right)^2 L^2 |D|, \]
\[|D| = \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2}, \]

3D turbulence theory - biharmonic operator:

\[A_{Smag} = \left(\frac{L}{\pi} \right)^2 \frac{L^4}{8} |D|, \]
\[|D| = \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2}, \]
Leith viscosity

2D turbulence theory - harmonic operator:

\[A_{Leith} = \left(\frac{\Lambda}{\pi} \right)^3 L^3 |\nabla \omega| \]

\[|\nabla \omega| = \sqrt{\left(\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right)^2 + \left(\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right)^2} \]

2D turbulence theory - biharmonic operator:

\[A_{Leith} = \left(\frac{\Lambda}{\pi} \right)^3 \frac{L^5}{8} |\nabla \omega| \]

\[|\nabla \omega| = \sqrt{\left(\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right)^2 + \left(\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right)^2} \]

CFL condition:

\[A_{Laplacian} \lessdot \frac{L^2}{4 \Delta t} \]

\[A_{Biharmonic} \lessdot \frac{L^4}{32 \Delta t} \]
Modified Leith viscosity

2D turbulence theory - biharmonic operator:

\[A_{Leith} = \left(\frac{1}{\pi} \right)^3 \frac{L^5}{8} \sqrt{\Lambda^6 |\nabla \omega|^2 + \Lambda_d^6 |\nabla \nabla \cdot u_h|^2} \]

\[|\nabla \omega| = \sqrt{\left[\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right]^2 + \left[\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right]^2} \]

\[|\nabla \nabla \cdot u_h| = \sqrt{\left[\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right]^2 + \left[\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right]^2} \]
Modified Leith viscosity – consequences: less noise

Vertical velocity from a simulation of spindown and instability of a temperature front in a reentrant channel. A simulation with the Leith viscosity applied to the horizontal velocities (left) and a simulation with the modified Leith viscosity (right) are shown. Light colors are near zero; colors represent upward or downward motion.

Modified Leith viscosity – consequences: better stability

A Global Ocean Simulation with MITgcm:

Maximum Courant number. *Gray line is from the Leith integration, and black line is from the modified Leith integration.*

Velocity field during a spin-up simulation on the SL16 mesh with wind and baroclinic forcings (June 2010). The Loop Current and other eddies can be seen in the figure.
Gulf of Mexico simulation results: full-run

Velocity field during a prognostic simulation on the SL16 mesh (June 16th 2010). The Loop Current and other eddies can be seen in the figure.
Gulf of Mexico simulation results: temperature

Temperature field during a prognostic simulation on the SL16 mesh (June 16th 2010).
Gulf of Mexico simulation results: salinity

Salinity field during a prognostic simulation on the SL16 mesh (June 16th 2010).
Concluding Remarks

- Algorithmic improvements, leading to the accurate computation of the baroclinic pressure gradients and horizontal diffusion terms of the transport equations, by evaluating these terms directly in the z-coordinate, and using higher-order vertical interpolation.

- Systematic schemes for smoothing bathymetry.

- Better accounting for horizontal viscosity by using a biharmonic operator, which is more scale-selective, and also computing the viscosity parameter at every grid point, dynamically, according to a modified version of Leith.

- Stable simulation of the entire Gulf of Mexico on a high-resolution mesh during 2010/06/13 - 2010/06/25.
Acknowledgments
Funding for this work has been provided by BP and the Gulf of Mexico Research Initiative, under Consortium for Advanced Research on Transport of Hydrocarbon in the Environment- (CARTHE) II. Simulations were performed on Stampede and Lonestar HPC systems of Texas Advanced Computing Center (TACC) at The University of Texas at Austin.